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Wenzel's modification of Young's equation for contact angles, equation (1), may be derived from considerations of free 
surface energy, though not from the assumption that surface "tensions" may be represented by vectors. A theory is pre­
sented for the hysteresis of contact angles. The "driving force" toward the attainment of an equilibrium contact angle is 
found to be equal to the surface tension of the liquid times the deviation of the cosine of the contact angle from its equilibrium 
value. I t is shown that this may be equated to the "contortional energy" F0 tha t the drop must have in order for its edge 
to surmount a ridge. The result is in the same form as the equation of Adam and Jessop: KTi — 72) = 72 cos 6,,r ± F0, 
but with a new and physically meaningful interpretation of F0. 

Introduction 
Wenzel,2'3 in 1936, proposed the following 

generalization of Young's4 equation for contact 
angles 

K7If - Tu) = T2COSS (1) 

— ft — i*£ > 
r ~ A ~ dZ = 

with 
a = actual area of interface 
A = "apparent" area of the "geometrical" interface 
$ = contact angle (see Fig. 1) 
7 = interfacial tension, or, better, free interfacial energy 

The subscript 2 refers to the liquid-gas interface; 
12 to the solid-liquid interface and If to the solid-
gas interface.5,6 

Wenzel presented data to support his equation 
but did not give a mathematical derivation. 
Cassie and Baxter7 have attempted a derivation, 
but in their equation number 4 they replaced E D > 
the work of spreading, by E, the work of immersion, 
and proceed to "define" a contact angle on a rough 
surface. As Bartell, et al., have pointed out8 

these quantities differ by the term Y2. When the 
correct substitution is made, Cassie and Baxter's 
derivation yields an identity. 

Derivation of the Young-Wenzel Equation.— 
Young's equation is customarily derived by resolu­
tion of vectors (the surface tensions). Adam,9 

states that "This is legitimate, as the mathematical 
surface tension can always be substituted for the 
physical free surface energy, to obtain the condi­
tions of equilibrium when only the consequences 
of this free energy are concerned." But the 
derivation of Wenzel's modification of Young's 
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equation constitutes an exception to Adam's 
generalization. The vector derivation yields no 
answer as to the effects of. roughness, for the 
directions of the "surface tension vectors" are 
determined by the geometry of the three interfaces 
within only an infinitesimally small distance from 
the triple interface. 

The use of the free surface energy removes this 
difficulty. Adam's discussion of free surface energy 
may be put in the form 

7n = ZFJHan (2) 

where F is free energy, and n refers to the wth inter­
face. The general equation for the free energy 
relations of the system containing three interfaces 
at equilibrium is 

dF = O 
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(4) 

Equations 3 to 5 may be conveniently inter­
preted, and dAz/dAn evaluated, by consideration 
either of a small section of the triple interface, or of 
an entire drop that is small enough that the liquid-
air interface is a segment of a sphere.10 The former 
method was used by Poynting and Thompson11 to 
derive Young's equation from free surface energy 
consideration. Their derivation evaluates dA 2/ 
dA 12 at once as cos 8, and we have equation 1. 

Alternatively, considering a droplet, a differential 
change in the shape of the drop (e.g., flattening it 
out) must produce no change in free energy, 
though the interfacial areas do change. This is a 
verbal expression of equation 3. bAi/bAu may be 

(10) G. L. Mack, J. Phys. Chem., 40, 159 (1936). 
(11) J. H. Poynting and J. J. Thompson, "A Textbook of Physics; 

Properties of Matter ," Eighth edition, Chas. Griffin and Co., Ltd., 
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calling this method of derivation to my attention. 
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evaluated by considering the analytical formulas 
for the areas of the base and the spherical surface 
of the drop. Restriction to constant drop volume 
makes A2 a function of Au, and differentiation at 
constant volume yields the result cos 8. The 
corresponding treatment for the case of a liquid 
in a capillary yields exactly the same result. 

Theory of Hysteresis.—If we consider a non-
equilibrium contact angle, then 

dF 
v . - = ± r{7u — T1) + T2 cos flobsd 
OA KL 

= ± T2(COS 0ObBd - COS 0«,.) = T, A COS 6 (6) 

From this it may be seen that the driving force 
toward the attainment of the equilibrium contact 
angle is proportional to the surface tension of the 
liquid and to the deviation of the cosine of the con­
tact angle from the equilibrium value. 

This suggests a source of hysteresis of the contact 
angle on chemically homogeneous surfaces. Con­
sider first a drop placed in the center of a system 
of ridges forming concentric circular rings. Biker-
man12 has given a detailed discussion of the motion 
of a drop front over a rough surface. He pointed 
out that the climbing of a drop front over a ridge 
requires "contortion [i.e., extension] of the liquid-
air interface," and consequently an increase in the 
energy of the system. If this additional energy is 
Fc, then the drop will cease to change its shape 
spontaneously when 

bF 
C-T- = ! T2 A cos $ 1 g F0 (7) 

While a system of concentric circular ridges is in 
principle attainable, it does not correspond to the 
ordinary "roughness" of a solid surface. Clearly, 
for a rough surface having a completely random 
array of hills and valleys, there will be paths 
by which the triple interface can move without 
surmounting the entire height of the energy barrier, 
Fc described above. But a configuration will be 
attainable, corresponding to a value of Fc between 
zero and the value for the case of concentric ridges, 
at which motion of the triple interface will cease. 
A cos 6 will be somewhere between zero and that 
value corresponding to the case of concentric 
circular ridges. 

In principle, the height of the energy barrier F0 
should be calculable for certain simple configura­
tions—e.g., saw-tooth, or sinusoidal concentric 
ridges. But it should be far more difficult to 

calculate FQ for any "random" type of roughness. 
(Bikerman has showed that the motion of a drop-
front is very different, on a ridged surface, depend­
ing on whether the motion is parallel or perpen­
dicular to the ridges.) 

Equation 7 may be put in the form of the equa­
tion of Adam and Jessop9'13 (which was proposed 
without mathematical proof) 

KT1, - 7i2) = y>- cos 9. + F 
= T2 cos 8T - F (8) 

Here 0a is the observed advancing or contact angle 
and 0r is the observed receding contact angle. F 
was hypothesized as a "frictional force, operating 
along the surface with equal intensity, when ad­
vancing and receding motions were just pre­
vented." Adam remarks of this proposal, "This 
treatment is probably nothing but a formal de­
scription, however. It is very difficult to see how 
there can be a permanent frictional resistance to the 
motion of a liquid over a solid." 

It is now seen that there is a valid physical 
meaning for F: it is the "contortional energy" that 
the drop must have if the drop front is to move from 
one favored configuration of the triple interface 
(more or less meandering across the "hills and 
valleys" of the solid surface) to another. Evi­
dently, as roughness decreases, less "contortion" 
of the liquid-air interface is required in order for 
the drop front to advance or recede. Consequently 
hysteresis decreases also. 

A somewhat similar treatment could be given 
for hysteresis on smooth but chemically inhomo-
geneous surfaces, having regions, e.g., of polar and 
of non-polar molecules. A drop of, say, water 
would have an average free surface energy in the 
liquid-solid interface corresponding to the average 
composition of the solid surface. This (together 
with the other free surface energies) would deter­
mine the equilibrium contact angle. But as the 
drop front advances or recedes, regions must be 
crossed in which the energies are such that the con­
tact angle does not correspond to the equilibrium 
value. Hence there must be contortion of the 
liquid-air interface, requiring extra energy, F^, 
if the drop front is to move. The result is hys­
teresis, following equation 8. 
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